The Application of high-dimensional Data Classification by Random Forest based on Hadoop Cloud Computing Platform
نویسندگان
چکیده
The high-dimensional data has a number of uncertain factors, such as sparse features, repeated features and computational complexity. The random forest algorithm is a ensemble classifier method, and composed of numerous weak classifiers. It can overcome a number of practical problems, such as the small sample size, over-learning, nonlinearity, the curse of dimensionality and local minima, and it has a good application prospect in the field of high-dimensional data classification. In order to improve the classification accuracy and computational efficiency, a neval classification method based on the Hadoop cloud computing platform is proposed. Firstly, the processing of Bagging algorithm is done with the data sets to get the different data subsets. Secondly, the Random Forest is completed by training of the decision tree under the MapReuce architecture. Finally, the processing of data sets classification is done by the Random Forest. In our experiment, the three high-dimensional data sets are used as the subjects. The experimental results show that the classification accuracy of proposed method is higher than that of stand-alone Random Forest, and the computational efficiency is improved significantly.
منابع مشابه
Cloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming
The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...
متن کاملData Replication-Based Scheduling in Cloud Computing Environment
Abstract— High-performance computing and vast storage are two key factors required for executing data-intensive applications. In comparison with traditional distributed systems like data grid, cloud computing provides these factors in a more affordable, scalable and elastic platform. Furthermore, accessing data files is critical for performing such applications. Sometimes accessing data becomes...
متن کاملReduction of Energy Consumption in Mobile Cloud Computing by Classification of Demands and Executing in Different Data Centers
In recent years, mobile networks have faced with the increase of traffic demand. By emerging mobile applications and cloud computing, Mobile Cloud Computing (MCC) has been introduced. In this research, we focus on the 4th and 5th generation of mobile networks. Data Centers (DCs) are connected to each other by high-speed links in order to minimize delay and energy consumption. By considering a ...
متن کاملClassification Algorithms for Big Data Analysis, a Map Reduce Approach
Since many years ago, the scientific community is concerned about how to increase the accuracy of different classification methods, and major achievements have been made so far. Besides this issue, the increasing amount of data that is being generated every day by remote sensors raises more challenges to be overcome. In this work, a tool within the scope of InterIMAGE Cloud Platform (ICP), whic...
متن کاملThe impact of Cloud Computing in the banking industry resources
Today, one of the biggest problems that gripped the banking sphere, the high cost of implementing advanced technologies and the efficient use of the hardware. Cloud computing is the use of shared services on the Internet provides a large role in developing the banking system, without the need for operating expenses including staffing, equipment, hardware and software Reducing the cost of implem...
متن کامل